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A B S T R A C T

The substantial genetic diversity exhibited by influenza A viruses of swine (IAV-S) represents the main challenge
for the development of a broadly protective vaccine against this important pathogen. The consensus vaccine
immunogen has proven an effective vaccinology approach to overcome the extraordinary genetic diversity of
RNA viruses. In this project, we sought to determine if a consensus IAV-S hemagglutinin (HA) immunogen would
elicit broadly protective immunity in pigs. To address this question, a consensus HA gene (designated H3-CON.1)
was generated from a set of 1,112 H3 sequences of IAV-S recorded in GenBank from 2011 to 2015. The consensus
HA gene and a HA gene of a naturally occurring H3N2 IAV-S strain (designated H3-TX98) were expressed using
the baculovirus expression system and emulsified in an oil-in-water adjuvant to be used for vaccination. Pigs
vaccinated with H3-CON.1 immunogen elicited broader levels of cross-reactive neutralizing antibodies and in-
terferon gamma secreting cells than those vaccinated with H3-TX98 immunogen. After challenge infection with
a fully infectious H3N2 IAV-S isolate, the H3-CON.1-vaccinated pigs shed significantly lower levels of virus in
their nasal secretions than the H3-TX98-vaccinated pigs. Collectively, our data provide a proof-of-evidence that
the consensus immunogen approach may be effectively employed to develop a broadly protective vaccine
against IAV-S.

1. Introduction

Influenza A virus of swine (IAV-S) is one of the most important
respiratory pathogens of swine (Rajao et al., 2014a). The virus is
widespread worldwide, causing tremendous economic losses to swine
producers (Haden et al., 2012). Clinically, pigs infected with IAV-S
often display signs of an acute respiratory disease which is rapidly re-
solved after 7–10 days. However, when associated with other pathogens
of the porcine respiratory disease complex, IAV-S infection in pigs often
leads to severe pneumonia and even to death (Vincent et al., 2014). In
addition, the zoonotic potential of IAV-S poses a threat to public health.
Direct transmission of IAV-S from pig-to-human has been documented
(Ma et al., 2008). The 2009 pandemic H1N1 is an example of such an
event. Due to their susceptibility to both human and avian influenza
viruses, swine can act as a “mixing vessel” where genetic reassortment
between different influenza viruses can occur, which may lead to the
emergence of new influenza viruses with high pandemic potential (Ma
et al., 2008). Therefore, successful control of IAV-S in pigs will not only
reduce the economic impact that this pathogen has on the swine

industry but also alleviate the threat to public health.
The effective control of IAV-S is greatly challenged by the constant

evolution of the virus in the field (Rajao et al., 2018). Hemagglutinin
(HA) and Neuraminidase (NA) are the two viral envelope glycoproteins
that are used as a basis for classification of IAV-S subtypes. Currently,
three major subtypes of IAV-S are co-circulating in North America:
H1N1, H1N2 and H3N2 (Walia et al., 2018). The HA subtype 1 (H1) can
be phylogenetically classified into 6 distinct genetic clades namely:
H1δ1, H1δ2, H1α, H1β, H1γ and H1pdm09 (Anderson et al., 2015,
2013). Of the 6 H1 clades, the H1δ1, H1δ2 are derived from human
seasonal H1 IAV-S (Vincent et al., 2009). Genetic distances between
H1δ1, H1δ2 clades and the remaining 4 H1 clades could be up to 35%
(Anderson et al., 2013). The H3 can be divided into 4 clusters: H3-I, H3-
II, H3-III and H3-IV, and the majority of the sequences fall into cluster
IV (Anderson et al., 2013). New strains of influenza virus frequently
emerge in swine herds in the U.S. (Zeller et al., 2018).

The profound genetic diversity represents the most formidable
challenge for the development of a broadly protective vaccine against
IAV-S. Currently, polyvalent, whole-inactivated virus (WIV) vaccines
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are commonly used in the U.S. to control IAV-S [reviewed in (Sandbulte
et al., 2015)]. The commercial WIV vaccines are effective in protecting
vaccinated pigs against challenge infection with antigenically matched
viral strains. However, vaccine efficacy is dramatically reduced when
the vaccinated pigs are challenged with mismatched virus strains
(Kitikoon et al., 2013; Vincent et al., 2010, 2008). In some cases, pigs
vaccinated with a WIV vaccine, followed by a challenge infection with
an antigenically mismatched virus strain display severe respiratory
disease compared to naïve-challenge controls (Gauger et al., 2011;
Vincent et al., 2008). This phenomenon is referred to as vaccine-asso-
ciated enhanced respiratory disease (VAERD). Because the process of
producing and licensing a WIV vaccine is time-consuming and ex-
pensive, commercial WIV vaccines-are not updated fast enough to cope
with the continually evolving IAV-S in the field. To ensure the antigenic
match, swine producers often use autogenous vaccines produced from
inactivated IAV-S isolates originating from their farms [reviewed in
(Sandbulte et al., 2015)]. However, the autogenous vaccines are not
required to be tested for potency and efficacy, and their efficacy
sometimes might be suboptimal (Sandbulte et al., 2015). Recently, a
live-attenuated influenza virus (LAIV) vaccine was licensed for clinical
application in the U.S. Experimental data demonstrate that LAIV vac-
cine confers better heterologous protection than WIV vaccines (Abente
et al., 2018; Gauger et al., 2014; Loving et al., 2013). However, there is
a great concern of reversion to virulence due to the potential re-
assortment between LAIV and field IAV-S isolates.

One effective approach to overcome the extraordinary genetic di-
versity of RNA viruses is to computationally design a consensus vaccine
immunogen based on a large number of field virus sequences. As de-
monstrated in the case of human immunodeficiency virus type 1 (HIV-
1), the average genetic distances between a concensus vaccine im-
munogen and wild-type viruses can be reduced to half of those between
wild-type viruses to each other (Novitsky et al., 2002). Importantly, it
has been demonstrated that consensus HIV-1 vaccine immunogens elicit
broader levels of protective immunity than naturally occurring im-
munogens (Hulot et al., 2015; Santra et al., 2008; Weaver et al., 2006).
HA is an important target for the development of IAV vaccines because
it is the most abundant envelope protein responsible for binding of IAV
to the host cells. There are numerous studies on the protective im-
munity conferred by consensus HA immunogens for human and avian
IAV (Chen et al., 2008; Hyoung et al., 2017; Lingel et al., 2017; Webby
and Weaver, 2015; Zhou et al., 2017). However, we are not aware of
any publications on the development of consensus HA vaccine im-
munogens for IAV-S except one publication describing the protective
immunity of DNA vaccines encoding matrix 2 ectodomain (M2e), cy-
totoxic T lymphocyte epitopes and consensus H3 of IAV-S in mice
(Wang et al., 2012). We report here the design and characterization of a
consensus HA vaccine immunogen against H3 IAV-S. We demonstrate
that the consensus H3 immunogen elicited broad levels of protective
immunity in pigs as compared to a naturally occurring H3 immunogen.

2. Materials and methods

2.1. Cells and viruses

The Madin-Darby Canine Kidney (MDCK) cell line was obtained
from American Type Culture Collection (ATCC® CCL-34). The cells were
cultured in Dulbecco’s Modified Eagle Medium (Gibco, Cat. # 12800-
082) supplemented with 0.2% bovine serum albumin (BSA) fraction V
(Sigma, Cat. # A8412), 25mM HEPES (Hyclone, Cat. # SH30237.01),
10% fetal bovine serum (Atlanta Biological, Cat. # S10650) and 1X
antibiotic (100 U/ml penicillin and 100 μg/ml streptomycin) as pre-
viously described (World Health Organization., 2011). Spodoptera fru-
giperda Sf9 (insect cells) were cultured in protein-free ESF 921™ culture
medium (Expression System, Cat. # 96-001-01) supplemented with 1X
antibiotic (100 U/ml penicillin and 100 μg/ml). Six H3N2 IAV-S isolates
used in this study (Table 1) were obtained from the National Veterinary

Services Laboratories (NVSL).

2.2. Design of the H3 consensus sequence

A total of 1,112 HA subtype 3 (H3) sequences of the IAV-S origi-
nating in the U.S. from 2011 to 2015 were collected from the Influenza
Virus Resources database (https://www.ncbi.nlm.nih.gov/genomes/
FLU/Database/nph-select.cgi?go=genomeset) on September 20th,
2015. These sequences were aligned by using the MUSCLE 3.8 program
(Edgar, 2004). A phylogenetic tree was constructed following the
maximum likelihood method in MEGA software (version 6.06) (Tamura
et al., 2013). Redundant sequences sharing equal or greater than 99%
similarity were removed by using Jalview (Waterhouse et al., 2009).
After that, a set of 230 non-redundant sequences was obtained. Finally,
a consensus sequence designated H3-CON.1 was generated by using the
default setting in Jalview (Waterhouse et al., 2009).

2.3. Protein expression and purification

The Bac-to-Bac® Baculovirus Expression System (Invitrogen) was
used to express two different HA antigens: H3-CON.1 and H3-TX98
(GenBank accession no. AEK70342.1). The coding sequences of these
two modified HA antigens were separately cloned to the pFastBac1
plasmid. The resulting plasmids were then transformed into MAX effi-
ciency® DH10Bac™ competent cells to generate the recombinant bac-
mids. After that, the recombinant bacmids were transfected into Sf9
insect cells to generate recombinant baculovirus expressing the HA
proteins, following the manufacturer’s protocol. The recombinant ba-
culovirus stocks were then used to infect Sf9 cells for expression of HA
proteins. Recombinant proteins secreted in the culture medium were
purified by immobilized metal affinity chromatography. Protein purity
and integrity was analyzed by reducing and denaturing sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by
Coomassie staining.

2.4. Pig experiments

Pig experiments conducted in this study were approved by the
University of Nebraska-Lincoln (UNL) Institutional Animal Care and
Use Committee under the protocol number 1297. Two experiment were
conducted. In the first experiment, a total of 18 three-week-old, IAV-S
seronegative pigs were purchased from Midwest Research Swine
(Glencoe, MN). The pigs were randomly assigned into three groups,
each of which were accommodated in a separate room in the biose-
curity level -2 animal research facilities at UNL. Groups 1 and 2 were
immunized with the H3-CON.1 and H3-TX98 proteins, respectively.
These proteins were emulsified in 20% (V/V) Emulsigen ®-DL 90
(Phibro Animal Health Corporation, Omaha NE) in a way that each dose
of vaccine contained 100 μg protein in 2mL volume. The vaccines were
administered twice intramuscularly at day 0 and 21. Pigs in group 3
were inoculated with 2mL DMEM medium to serve as a non-vaccina-
tion control. Whole blood with or without anticoagulant were collected
from all pigs before vaccination, and at days 35 and 44 post-vaccination
(pv), for isolation of serum and peripheral blood monocytes (PBMCs)
which were used for measurement of humoral and cellular immune

Table 1
List of swine H3N2 isolates used in the study.

H3N2 isolates Designation GenBank Accession

A/swine/Minnesota/A01125993/2012 MN5993 AFU08620
A/swine/Kansas/A01377243/2014 KS7243 AIA24431
A/swine/Minnesota/A01392534/2013 MN2534 AHA11511
A/swine/Michigan/A01259002/2012 MI9002 AGC96222
A/swine/Colorado/A01203748/2012 CO3748 AFU10042
A/swine/Texas/4199-2/1998 TX98 AEK70342
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responses, respectively. At day 44 pv, all pigs were challenged by an
intratracheal inoculation with 2mL live virus containing 105.0 TCID50

of the H3N2 IAV-S isolate MN5993. After challenge infection, nasal
swabs were collected daily from all pigs for evaluation of viral shed-
ding. At day 49 pv (e.g. day 5 post-challenge infection), all pigs were
humanely euthanized and necropsied. Samples of lung were collected
for evaluation of lung pathology by a board-certified pathologist
blinded to the treatment groups as described previously (Gauger et al.,
2012).

In the second experiment, 6 three-week-old, IAV-S seronegative pigs
were purchased from Midwest Research Swine (Glencoe, MN) and were
accommodated in a separate room in the biosecurity level -2 animal
research facilities at UNL as mentioned above. The pigs were inoculated
intratracheally with 2mL virus inoculum containing 105.0 TCID50 of the
H3N2 IAV-S isolate MN5993. Serum samples were collected from the
pigs before infection and at day 35 post-infection for evaluation of
cross-neutralizing activities against different H3N2 IAV-S isolates.

2.5. RNA in situ hybridization

RNA in situ hybridization (ISH) was performed on formalin-fixed,
paraffin-embedded (FFPE) tissues by using the RNAscope® assay
(Advanced Cell Diagnostics, ACD). The procedure was performed
manually according to the manufacturer’s instruction. Briefly, 4 μm
sections were baked for 1 h at 60 °C, deparaffinized in xylene, followed
by dehydration in an ethanol series. Afterwards, sections were treated
with RNAscope® Hydrogen peroxide reagent (H2O2) (ACD, Cat. #
322330) for 10min at room temperature and washed twice with dis-
tilled water. Then slides were immersed in boiling RNAscope® target
retrieval reagent (ACD, Cat. # 322000) for 15min and washed twice in
distilled water. Sections were treated with Protease plus reagent (ACD,
Cat. # 322330) for 30min at 40 °C in a HybEZ hybridization oven. The
sections were then incubated with an RNA probe specific to the IAV-S
NP protein (V-InfluenzaA-H3N2-NP) for 2 h at 40 °C in a HybEZ hy-
bridization oven. Signal amplification and detection reagents were
applied sequentially using RNAscope® 2.5 HD Detection Reagent-Brown
(ACD, Cat. # 322310) and incubated in AMP 1, AMP 2, AMP 3, AMP 4,
AMP 5, and AMP 6 reagents, for 30, 15, 30, 15, 30, 15min respectively.
Slides were repeatedly washed twice using wash buffer reagent (ACD,
Cat. # 310091) after each amplification step. Chromogenic detection
was performed using diaminobenzidine (DAB), followed by counter-
staining with Gill´s hematoxylin. The Ss-PPIB (Sus Scrofa Peptidylprolyl
Isomerase B (cyclophilin B) probe was used as a positive control, and
the dapB probe was used as a negative control.

2.6. Quantification of viral loads

Viral RNA from nasal swabs were extracted using the QIAamp Viral
RNA Mini Kit (Qiagen, Cat. # 52906), according to the manufacturer’s
instruction. Viral genomic copy numbers were quantified using a real-
time reverse transcription PCR (RT-PCR) kit (Life Technologies,
VetMax-Gold SIV Detection Kit, Cat. #4415200). The RT-PCR product
was gel-purified and cloned into the pGEMT-easy vector (Promega, Cat.
# A1360) and sequenced. After that, the RNA amplicon (UCGAGCUC
UCGGACGAAAAGGCAACGAACCCGAUCGUGCCUUCCUUUGACAUGA
GUAAUGAAGGAUCUUAUUUCUUCGGAGACAAUGCAGAGA) was che-
mically synthesized and used to establish a standard curve based on
which the absolute copy numbers of viral RNA in each sample was
estimated. Viral loads in nasal swabs were reported as log10 copies per
μL of RNA loaded to the RT-PCR reaction. For statistical purposes,
samples that had undetectable levels of viral RNA were assigned a value
of 0.

2.7. Measurements of immune responses

The serum-virus neutralization (SVN) assay was performed on

MDCK cells as previously described (Gauger and Vincent, 2014; Van
Reeth et al., 2003), with modifications. Briefly, the sera were treated
with receptor destroying enzyme II (HARDY Diagnostics, Cat. #
370013) at 37 °C overnight, followed by inactivation at 56 °C for
30min. Treated sera were diluted 2-fold serially in 50 μl of virus in-
oculation medium (DMEM supplemented with 0.2% BSA faction V,
25mM HEPES, 1x antibiotic and 1 μg/mL TCPK-treated trypsin (Sigma
Cat. # T1426) on a 96-well plate and then incubated with an equal
volume (50 μl) containing 100 TCID50 of test virus for 1 h at 37 °C. The
entire mixture of serum and virus (100 μl/well) was transferred to an
Ubottom 96-well plate containing confluent MDCK cells that had been
seeded 48 h earlier. The plate was further incubated for 4 days at 37 °C
in a humidified atmosphere containing 5% CO2. After that, the pre-
sence of virus infection in each well were determined by using the
hemagglutination assay. The neutralization titer is the highest serum
dilution that does not exhibit any sign of hemagglutination. For sta-
tistical purposes, samples that do not exhibit any sign of neutralization
will be assigned a titer of 2.

The frequencies of IFN-γ secreting cells (IFN-γ SCs) in PBMCs were
measured by using an IFN-γ Elispot assay as previously described
(Correas et al., 2017; Meier et al., 2003). Briefly, ninety-six well plates
with PVDF membrane were rinsed with 30% ethanol, followed by in-
cubation overnight at 4 °C with 50 μl/well of anti-porcine IFN-γ anti-
body (BD Biosciences Pharmingen, clone P2G10) at a concentration of
10 μg/mL. The plate was washed three times with sterile PBS and
blocked by incubation with 250 μl/well of complete RPMI (cRPMI)
medium for 2 h at 37 °C in a 5% CO2 incubator. PBMCs of each pig were
plated in duplicate in 100 μl/well of cRPMI, followed by stimulation
with one of the selected H3N2 IAV-S isolates in the form of live virus
diluted in cRPMI. A cocktail of PMA (Sigma Cat # P8139, final con-
centration 10 ng/mL) and Iomycin (Sigma Cat # I-0634, final 1 μl/mL)
diluted in cRPMI was used as positive control while cRPMI was used as
negative control. After 20 h incubation at 37 °C in a 5% CO2 incubator,
the cells were removed by washing three times with 250 μl/well of PBS
containing 0.05% tween-20 (PBS-T20). Fifty microliters of biotin-la-
beled anti-porcine IFN-γ (clone P2C11) at a concentration of 2 μg/mL in
PBS-T20 were added to each well and the plate was incubated at room
temperature for 1 h. Spot detection was performed using alkaline
phosphatase conjugated streptavidin and alkaline phosphatase sub-
strate as previously described (Parida et al., 2012). Spots were counted
and analyzed using a CTL ImmunoSpot counter (Cellular Technology).

2.8. Statistical analysis

Prior to statistical analysis, the neutralization titers were trans-
formed into log base 2. Virus neutralization titers, and IFN-γ SCs in
PBMCs were analyzed by one-way analysis of variance (ANOVA). Viral
shedding was analyzed by repeated-measures two-way ANOVA. Tukey’s
multiple comparisons test was used for comparison among treatments.
Genetic distances from wild-type H3 to the consensus H3-CON.1 and
among wild-type H3 sequences were analyzed by unpaired t-test with
Welch's correction. Results were considered statistically significant
when p < 0.05. All statistical analysis was done in GraphPad Prism 7.0
(GraphPad Software, Inc).

3. Results

3.1. H3 consensus immunogen has reduced genetic distances to the
contemporary IAV-S sequences

A total of 1,112 amino acid sequences of H3 IAV-S originating in the
U.S. were collected from the Influenza Virus Recourse database on
September 20th, 2015. Initial analysis showed that the numbers of se-
quences within each of the phylogenic clusters were not equal and that
many sequences were closely similar, sharing equal or greater than 99%
identify. Consequently, the consensus H3 sequence generated from this
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original data set skewed toward the phylogenetic cluster containing a
larger number of sequences. To avoid this problem, redundant se-
quences were removed from the original data set to obtain a subset of
sequences with less than 99% similarity. A consensus sequence was
empirically computed in a way that it should be located closer to the
center of the phylogenetic tree (Fig. 1A). Next, the pairwise genetic
distances between H3-CON.1 and wild-type H3 sequences and the dis-
tances among wild-type H3 sequences were calculated. The pairwise
genetic distances between H3-CON.1 and wild-type H3 sequences
varied from 1.87% to 13.04%, with the median of 3.58%. The pairwise
genetic distances among wild-type H3 sequences varied from 2.06% to
17.57%, with the median of 6.70% (Fig. 1B). Clearly, the pairwise ge-
netic distances between the H3-CON.1 and wild-type H3 sequences
were significantly shorter than the pairwise distances among the wild-
type H3 sequences. We hypothesized that a subunit vaccine formulated
in base of H3-CON.1 gene might confer broader levels of heterologous
protection than a subunit vaccine formulated in based of a single,
naturally occurring H3 sequence.

3.2. Expression of the HA antigens

H3-CON.1 was expressed using baculovirus expression system. For
comparative purposes, HA sequence of the H3N2 strain TX98 (desig-
nated H3-TX98) was also expressed in the same manner. The TX98
strain was selected for comparative purposes because it has been used
to formulate multiple WVI and LAIV candidate vaccines (Richt et al.,
2006; Vincent et al., 2012). To enhance the secretion of the expressed
proteins, the original signal sequence of each H3 protein was replaced
by the honeybee melittin (HBM) signal sequence. Additionally, the
transmembrane and cytoplasmic domains were removed. Finally, the
bacteriophage T4 tetramerization sequence and 6X histidine tag were
fused in frame to the C-terminus of the HA proteins. The T4 tetra-
merization helps stabilize conformational epitopes (Krammer et al.,
2012) while the 6X histidine tag facilitates the purification of the ex-
pressed proteins by immobilized metal affinity chromatography
(Fig. 2A). After purification, the proteins were analyzed for purity by
SDS-PAGE, followed by Coomassie staining. As shown in (Fig. 2B), only
one single band of approximately 72 KDa was detected in both H3-

Fig. 1. Phylogenetic analysis of IAV-S H3 sequences. (A) A phylogenetic tree constructed from a set of 230 non-redundant wild-type H3 sequences, together with a
consensus sequence (H3-CON.1). Bar represents nucleotide substitutions per site. Locations of the H3-CON.1 in the tree is indicated by a red dot whereas the locations
of naturally occurring IAV-S H3N2 isolates used in this study are indicated by green dots. The phylogenetic tree with tip labels is presented in Fig. S1 in the
supplemental material. (B) Pairwise genetic distances among wild-type H3 sequences, and between wild-type H3 and the H3-CON.1. The lower and upper boundaries
of the box indicate the 25th and 75th percentiles, respectively. The solid line in the box represents the median. Whiskers below and above the box indicate the
smallest and largest values, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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CON.1 and H3-TX98 protein preparations, without any visible signs of
contamination with other proteins, indicating the high levels of purity
of our protein preparations. As expected, the two proteins were reacted
with anti-histidine tag antibody as analyzed by western blot (Fig. 2C).

3.3. H3-CON.1 immunogen elicited broadly neutralizing antibody responses
in pigs

The H3-CON.1 and H3-TX98 protein preparations were used to
immunize pigs. Antisera collected at day 35 after the first vaccination
(corresponding to day 14 after the second vaccination) were used to
evaluate the cross-neutralizing activities against divergent H3N2 IAV-S
isolates. Although antisera collected from pigs vaccinated with H3-
TX98 protein displayed the highest virus neutralization titer against the
homologous IAV-S strains TX98, these antisera exhibited significantly
lower cross-neutralizing activities against the heterologous IAV-S iso-
lates (Fig. 3). In contrast, antisera collected from pigs vaccinated with
H3-CON.1 displayed a broad spectrum of cross-neutralization. Specifi-
cally, antisera against H3-CON.1 had significantly higher cross-neu-
tralization titers against MN5993, KS7243, MI9002 and CO3748 than
antisera against H3-TX98. However, the antisera against H3-CON.1 did
not exhibit significantly higher levels of cross-neutralizing activities
against MN2534 than antisera against H3-TX98.

Next, antisera against MN5993, an IAV-S strain located in another
branch of the phylogenetic tree (Fig. 1A), were comparatively analyzed
for their cross-neutralizing activities. Of note, these antisera were col-
lected from pigs at day 35 after experimentally infected with the IAV-S
isolate MN5993. Similar to antisera against H3-TX98 protein, the an-
tisera collected from pigs infected with MN5993 displayed high neu-
tralization titers against the homologous virus. Surprisingly, the
MN5993 antisera did not significantly neutralize any of the five tested
heterologous IAV-S isolates (Fig. 3). Consequently, the MN5993 had
significantly lower cross-neutralization titers against TX98, KS4243,
MN2534, MI9002 and CO3748 than the H3-CON.1 antisera. Collec-
tively, the data demonstrated that H3-CON.1 elicited broader cross-
neutralizing antibodies than the H3-TX93 and MN5993 live virus.

3.4. H3-CON.1 immunogen elicited cross-reactive T cell responses

Cross-reactivity of T cells in PBMCs was measured against four di-
vergent H3N2 isolates by using the IFN-γ ELISPOT assay. The PBMCs
were collected at day 44 after the first vaccination. Pigs immunized
with H3-CON.1 immunogen had greater number of IFN-γ SCs than
those immunized with H3-TX98 immunogen when measured against
three out of four tested IAV-S isolates namely: MN5993, MI9002 and
CO3748 (Fig. 4). Interestingly, the H3-CON.1 immunized pigs had si-
milar number of IFN-γ SCs when measured against the H3N2 isolate
TX98 as compared to the H3-TX98 immunized pigs. Collectively, the
data demonstrate that H3-CON.1 immunogen elicits broadly reactive T
cell responses in pigs.

3.5. H3-CON.1 immunogen conferred better protection against a
heterologous virus infection

At day 44 after the first vaccination, all pigs were challenged by an
intratracheal inoculation with the H3N2 isolate MN5993. This IAV-S
isolate was selected for challenge infection because its genetic distance
to H3-CON.1 (3.36%) is equivalent to the median distance between H3-
CON.1 and the wild-type IAV-S isolates (3.58%, Fig. 1B). Nasal swabs
were collected daily after infection for evaluation of viral shedding. Pigs
vaccinated with H3-CON.1 immunogen shed significantly lower levels
of virus in their nasal secretions than those immunized with H3-TX98
immunogen (Fig. 5). However, none of them showed any clinical signs
after challenge infection, including those in DMEM group which were
seronegative at the time of challenge infection. Likewise, no significant
lung lesion was observed. By using in situ hybridization, however, we
were able to detect viral RNA in the bronchiolar epithelium cells of all
pigs, clearly indicating that they were infected with the challenge virus
(Fig. 5B).

4. Discussion

In this study, we sought to evaluate the cross-protective immunity
elicited by a consensus HA antigen of IAV-S. We opted to use the ba-
culovirus expression system (BVES) to express the HA immunogens.
One major advantage of the BVES is that the expressed proteins un-
dergo post-translation modifications that are necessary to maintain
their immunogenicity [reviewed in (van Oers et al., 2015v)]. Ad-
ditionally, the insect cells can grow to high cell density in suspension
culture in serum-free medium; thus, making it easy for scale-up pro-
duction. Of note, the BVES has been used to produce trivalent seasonal
human influenza vaccine (Treanor et al., 2011). We observed that H3-
CON.1 elicits broader levels of virus-neutralizing antibodies and virus-
specific IFN-γ SCs than H3-TX98, a naturally occurring immunogen.
Our results further support the notion that consensus immunogens can
be employed to expand the antigenic-coverage for highly variable RNA
viruses.

We observed in this study that virus-neutralizing antibody titers
seem to correlate with frequencies of IFN-γ SCs. For instance, pigs im-
munized with H3-CON.1 immunogen displayed high neutralizing an-
tibody titers against MN5993, TX98, and MI9002 and they also had
high frequencies of IFN-γ SCs against these three viral isolates. On the
other hand, the H3-CON.1- immunized pigs had lower virus neu-
tralizing antibody titer against CO3748 and they also displayed lower
frequencies of IFN-γ SCs against this viral isolate. However, this ob-
servation needs to be interpreted with caution since we only measured
neutralizing antibody titers and frequencies of IFN-γ SCs against a small
number of AIV-S isolates.

Ideally, we need to conduct multiple immunization/challenge ex-
periments against multiple wild-type H3N2 IAV-S isolates to compre-
hensively evaluate the protective efficacy of the H3-CON.1 immunogen.
However, this will require a lot of time and resources. Thus, in this
study, we conduct one challenge study against a representative wild-

Fig. 2. Expression and purification of H3 immunogens. (A) Schematic re-
presentation of the H3 constructs. Original signal sequence of each H3 protein
was replaced by the honeybee melittin (HBM) signal sequence (SS). The
transmembrane and cytoplasmic domains were replaced by bacteriophage T4
tetramerization sequence (T4) and 6X histidine tag (6x H). (B & C) Analysis of
the recombinant HA protein preparations. Purified proteins were resolved by
reducing and denaturing SDS-PAGE. (B) The SDS-PAGE gel was stained with
Coomassie blue. (C) Western blot analysis using an antibody against histidine
tag. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).

H. Sun, et al. Veterinary Microbiology 239 (2019) 108451

5



Fig. 3. Cross neutralizing antibody responses. Neutralizing activities of antisera collected at day 35 after the first vaccination were measured against six different
IAV-S H3N2 isolates. Neutralization titers are expressed as means and standard error of means (SEMs) calculated from six pigs in each treatment group. The
horizontal dotted line at 3.3 log2 indicates the cut-off of the assay. Data were analyzed by one-way ANOVA, followed by Tukey’s multiple comparisons test.
Treatments with the different superscripts are statistically different (p< 0.05).

Fig. 4. Cross-reactive T cell responses.
PBMCs were collected at day 44 after the first
vaccination. Frequencies of IFN-γ secreting
cells against four selected H3N2 isolates were
measured by IFN-γ ELISPOT. Date presented in
this figure are means and SEMs calculated from
six pigs in each treatment group. Data were
analyzed by one-way ANOVA, followed by
Tukey’s multiple comparisons test. Treatments
with the different superscripts are statistically
different (p< 0.05).
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type H3N2 isolate (namely MN5993) selected from the groups of 1,112
wild-type H3N2 isolates used to construct the H3-CON.1 sequence. The
challenge isolate was selected in the way that its genetic distance to H3-
CON.1 is equivalent to the median distance between H3-CON.1 and the
contemporary H3N2 IAV-S isolates (3.58%, Fig. 1B). Unfortunately, the
MN5993 isolate used for challenge infection does not have enough level
of virulence in pigs, as it did not cause any significant clinical signs or
lung lesions to the pigs, including those in the non-immunization con-
trol group. This lack of pathogenicity does not allow us to fully evaluate
the protective efficacy of our candidate vaccine. Therefore, we use viral
shedding as a main parameter for evaluation of protection. We observed
significant lower levels of vial shedding in the H3-CON.1 group than in
the H3-TX98 group, especially during the early time-points after chal-
lenge infection. Thus, under the conditions of this study, the H3-CON.1
immunogen seems to provide better protection against challenge in-
fection than the naturally occurring H3-TX98 immunogen.

Pigs vaccinated with a WIV vaccine followed by a challenge infec-
tion with a mismatched IAV-S strain often develop VAERD (Gauger
et al., 2011; Vincent et al., 2008). Moreover, VAERD was observed in
pigs vaccinated with a subunit HA vaccine produced in BVES followed
by a challenge infection with a mismatched IAV-S (Rajao et al., 2014b).
In this study, we did not observe VAERD in pigs that were vaccinated
with H3-TX98 immunogen and subsequently challenged with MN5993,
whose HA sequence shares 89.5% identity with the H3-TX98 sequence.

It was reported that adjuvants used for vaccine formulation impacts
VAERD outcomes (Souza et al., 2018). Since the adjuvant used in our
study is the same as the one used by Rajao and co-workers when they
defined the VAERD phenomenon in SIV vaccination (Rajao et al.,
2014b), we can rule out the contribution of adjuvant to this dis-
crepancy. In that previous study, the HA subunit vaccine was derived
from the H1N1 strain A/California/04/2009 and the challenge virus
was δ1-H1N2 A/Swine/Minnesota/02011/2008 (Rajao et al., 2014b).
The HA genes of these two strains share only 77.7% identify. Perhaps,
the pigs vaccinated with H3-TX98 did not show VAERD following
challenge with MN5993 because the difference between them is not
sufficient for VAERD to occur. It should be noted that it remains un-
known how much difference between the vaccine immunogens and the
challenge virus in order for VAERD to occur.

Currently, two HA subtypes of IAV-S (H1 and H3) are co-circulating
in the swine herds (Walia et al., 2018). Therefore, vaccines against
swine IAV-S need to include immunogens for both H1 and H3 subtypes.
Our data provide the evidence that the consensus H3 immunogen elicits
a broad spectrum of protective immunity. The most logical next steps
would be to design and evaluate the protective immunity elicited by a
consensus H1 immunogen in pigs. Especially, it would be interesting to
evaluate the protective efficacy of a polyvalent vaccine containing both
H1 and H3 consensus immunogens.

Fig. 5. Protection against challenge infection. At day 44 after the first vaccination, pigs were challenged by an intratracheal inoculation with the H3N2 isolate
MN5993. (A) Nasal swabs were collected daily until day 5 post-challenge. Viral RNA was quantified by using a validated real-time RT-PCR kit. Data are expressed as
mean and SEM calculated from six pigs in each treatment group. Data were analyzed by repeated-measures two-way ANOVA, followed by Tukey’s multiple com-
parisons test. P values represent statistical difference in the levels of viral shedding among treatment groups. (B) RNA in situ hybridization was performed on
formalin-fixed, paraffin-embedded (FFPE) lung tissues by using the RNAscope® assay (ACD, CA). Positive hybridization signal for influenza NP RNA (dark brown) is
observed in bronchiolar epithelial cells, 200×. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).
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